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We investigate the stability of a binary alloy directionally solidifying at a constant rate
and rotating with spin and/or precession about an inclined axis. Results show that,
prior to the onset of instability, a flow is induced by the inclination and modified by the
rotation, having a velocity profile like a spiral Ekman flow. The induced flow moves
steadily relative to the system when the system rotates with precession only, while it
changes direction periodically when the system rotates with spin (even if precession
is included). Based on this flow, the effects of inclined rotation on the stability of
the system are examined by linear analyses. We find that there are five mechanisms
affecting the stability due to inclined rotation: the reduction of both buoyancy and the
rotation vector along the height of the system are stabilizing, the gravity component
along the melt/solid interface is destabilizing, and the inclination-induced flow and
precession combine to play a stabilizing or a destabilizing role, depending on their
relative orientation and amplitude ratio. In general, the morphological mode is slightly
stabilized whereas the convective and mixed modes are significantly stabilized. For
inclined precession, the instability mode moving aligned with the gravity component
along the melt/solid interface is most unstable. For inclined spin, all the stability-
affecting mechanisms act equally in all directions so that the stability thresholds
for the instability modes moving in different directions are equal. For directional
solidification applications, the present results suggest that to prevent compositional
non-uniformities in the solid, inclined spin is more effective than inclined precession.

1. Introduction
During the directional solidification of binary alloys, the solute is either rejected

from or incorporated into the solid depending on the alloy system, and a solute
boundary layer is formed above the melt/solid interface. In such a circumstance,
the interface may become unstable to a cellular structure, resulting in an unwanted
compositional inhomogeneity in the solid. This is known as morphological instability,
a long-standing concern in, for example, microchip manufacturing technology. For
binary solutions, the morphological instability mainly results from the constitutional
supercooling of the residual melt above the interface (Rutter & Chalmers 1953). The
perturbed interface encounters the supercooled melt and starts to grow, rendering
the interface unstable (Mullins & Sekerka 1964; Wollkind & Segal 1970; Ungar
& Brown 1984).

The interface may also lose its planar shape due to convective instability in the
melt. This natural convection occurs due to a statically unstable density distribution
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in the residual liquid resulting from either the rejected solute being lighter, or the
incorporated solute being heavier, than the solvent. Coriell et al. (1980) investigated
the buoyancy-driven instability coupled with the morphological instability and
showed that the convective instability is characterized by a wavelength comparable
to the thickness of the compositional boundary layer and the wavelength of the
morphological mode is much shorter. These two modes are stationary and their
neutral curves are connected by the co-called mixed modes, which are oscillatory
in nature. Later, Jenkins (1985) conducted a weakly nonlinear analysis of the same
problem and indicated the mathematical complexity of the problem. By applying
the long-wave approximation, Riley & Davis (1990a, b) and Wheeler (1991) were
able to investigate the weakly nonlinear behaviour of the problem again and gain
a more thorough understanding of the interaction between the convective and
morphological instabilities as well as the nature of the bifurcation from the linear
critical point. Chen & Davis (1999) investigated the morphological instability of
a solidifying front growing into a pre-existing cellular convective flow, which may
occur due to the buoyancy- or inertial-driven instability. They found that the two-
dimensional convective flow stabilizes two-dimensional disturbances but destabilizes
three-dimensional disturbances. When the convective flow is weak, the morphological
mode is incommensurate with the flow in terms of disturbance wavelength. When
the flow is strong, the instability is forced to fit into the convective flow through the
amplitude modulation.

In order to prevent the melt/solid interface becoming corrugated, studying the
effect of a shear flow on the morphological instability has been discussed widely
(Glicksman, Coriell & McFadden 1986). Either naturally occurring or artificially
imposed shear flows were believed to be able to alter the thresholds of both the
morphological and convective instabilities and change the pattern of the interfacial
morphology as well. The flow-modified instability has been studied by Delves (1968,
1971) by imposing a Blasius boundary-layer flow above the melt/solid interface, by
Coriell et al. (1984) by applying a plane Couette flow parallel with the melt/solid
interface, by MacFadden, Coriell & Alexander (1988) and Brattkus & Davis (1988) by
imposing a plane stagnation flow vertically onto the melt/solid interface, and by Forth
& Wheeler (1989, 1992) by imposing an asymptotic suction boundary-layer flow along
the melt/solid interface. Forth & Wheeler (1992) showed that the shear flow serves
to decouple the convective and morphological modes, which were originally coupled
without shear. Brattkus & Davis (1988), Davis (1990), and Davis & Schulze (1996)
found a flow-induced morphological instability occurring due to the non-parallel
effect when the characteristic wavelength becomes large, as found by Chung & Chen
(2001). These investigations yielded two general conclusions. First, the imposed shear
flows have a weak effect on the critical condition of the morphological instability
because the morphological instability is characterized by a small wavelength. Second,
the imposed shear flows influence both the morphological and convective modes
when moving in specific directions. More specifically, a parallel shear flow suppresses
the instability modes that have propagation vector with a component parallel with the
imposed flow, while it has no effect on the mode propagating in the direction
perpendicular to the flow. In other words, the imposed parallel shear flow has only a
two-dimensional stabilizing capability, and the two-dimensional instability rolls of an
axis aligned with the flow direction occurs preferentially.

To extend the stabilizing effect of shear flow to three dimensions, Schulze & Davis
(1995) investigated a system that oscillates the solid in an elliptical orbit parallel to
the interface to generate a time-periodic Stokes-layer-type flow changing direction
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periodically. By selecting an appropriate frequency and amplitude of modulation, they
showed that the morphological instability could be significantly reduced. The effect
of a similar type of oscillatory Stokes-layer flow has recently been studied by Volfson
& Vinals (2001), who assumed that the amplitude of oscillation of the fluid far from
the interface is much smaller than the wavelength of the interfacial corrugation and
obtained an analytical form of the dispersion relation between arbitrary wavenumbers
and shear flow rates.

Another potential scheme to prevent the melt/solid interface from corrugation is to
rotate the system with respect to the vertical axis. Oztekin & Pearlstein (1992) and Lu
& Chen (1997) showed that vertical rotation in general stabilizes the convective mode
by the action of the Coriolis force but has negligible effect on the morphological
mode. Oztekin & Pearlstein also found that the morphological instability is of a small
wavelength so that the corresponding flow induced by the morphological instability
is virtually perpendicular to the melt/solid interface (i.e. parallel to the rotation axis),
rendering the generated Coriolis force insignificant.

In this paper, we propose an alternative scheme, namely inclined rotation with
spin and/or precession, which is supposed to contain the stabilizing effects of both
shear flow and rotation. This scheme is motivated by the experiment of Sample &
Hellawell (1984) and the analysis of Chung & Chen (2000). Their work showed that
such a scheme may significantly suppress the formation of chimneys within the mushy
zone of a solidifying binary alloy because, first, the buoyancy is reduced along the
direction of the density gradient due to inclination, and second, an Ekman type of
flow moving along the melt/solid interface is induced. This induced flow is driven by
the gravity component along the interface and modified by rotation. Unlike previous
studies in which shear flows were often artificially imposed, the spiral shear flow occurs
naturally in the inclined rotating system. Therefore, this scheme appears more feasible
for industrial applications. Note that in the system of Chung & Chen (2000) there is
a mushy layer between the solid and the residual melt, and the instability of the mush
was investigated by a linear stability analysis. Owing to the large resistance to the flow
in the mush, the corresponding Coriolis force and inclination-induced flow are both
very weak. In the present system, in contrast, there is no mushy layer and emphasis
is placed on the instabilities of the interfacial morphology and the melt, in which a
much larger induced flow and a more influential Coriolis force occur. In addition,
in the present system the interaction of the induced shear flow with the precession
may also significantly affect the stability, see, for example, Kropp & Busse (1991),
Busse & Kropp (1992), and Matthews & Cox (1997). They investigated the interaction
between a shear flow and a horizontal rotation vector for buoyancy-driven convection
and found that the interaction may be stabilizing or destabilizing depending on the
relative orientation and amplitude ratio of the shear flow and rotation vector. More
specifically, the rotation alone favours a two-dimensional instability roll with axis
aligned with the rotation vector, and the shear flow alone favours a roll aligned with
the flow. When both rotation and shear flow co-exist, an oblique roll is preferred,
and the critical Rayleigh number may be lower than that without rotation or shear
flow. In the present system, because precession has a component parallel to the
melt/solid interface, it can interact with the induced flow in a similar way. Thus, a
rich and complicated stability behaviour for the present system is expected. Similar
rotation systems have also been applied to thin-layer coating problems; see for
example Hoffmann & Busse (2001) and Davalos-Orozco & Busse (2002).

The paper is organized as follows. The mathematical formulation is given in § 2.
The equations and associated boundary conditions are solved analytically for the



384 C. A. Chung and F. Chen

z 2, 
z 3, 

z

Liquid

Solid

y

V

x

z=h (x, y, t)

g

X

x1, x2

Y

x3

y1

y2y3φn

φs

φp

φpφs
··

Z, z1

C∞

Figure 1. A sketch of the inclined rotation system. A binary alloy is directionally solidified
from below, and the semi-infinite liquid overlies the solid. The solid is assumed to grow
upwards with a constant speed V . The frame of reference denoted by oxyz is fixed at the
melt/solid interface, rotating with the solid and translating with the interface. φn is the inclined
angle, φ̇p is the precession speed, and φ̇s is the spin speed. The gravity vector points vertically
downward.

induced flow in § 3. The linear perturbation equations are derived in § 4. The stability
characteristics of the systems under different kinds of inclined rotation are discussed
in § 5. Finally, concluding remarks are summarized in § 6.

2. Problem description and formulation
The system considered is shown in figure 1, in which a dilute binary alloy of initial

temperature T∞ and concentration C∞ is solidified from below, and a solid region
forms below the semi-infinite bulk melt. The melt/solid interface, whose position is
given by z = h(x, y, t), is assumed to be initially planar and advances into the bulk
melt at a constant speed V . The system rotates about an inclined axis by spin and/or
precession and the angular velocity can be described as

Φ̇ =(φ̇p sin φn sin φs)ex + (φ̇p sin φn cos φs)ey + (φ̇p cos φn + φ̇s)ez, (2.1)
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where φn and φs are respectively the angles of inclination and spin, and φ̇p and φ̇s are
the angular velocities of precession and spin. In addition, ex , ey and ez are the unit
vectors of the Cartesian coordinate system fixed at the melt/solid interface, rotating
with the solid and translating upward at velocity V , as denoted by the frame oxyz in
figure 1.

With respect to such a reference frame, the governing equations in the fluid region
h < z < ∞ are the conservation of mass, momentum, solute and heat, respectively

∇ · u = 0, (2.2a)[
∂

∂t
− V

∂

∂z
+ u · ∇

]
u + 2Φ̇ × u = −∇P

ρ0

+ ν∇2u +

(
ρ

ρ0

− 1

)
g, (2.2b)

(
∂

∂t
− V

∂

∂z
+ u · ∇

)
C = Df ∇2C, (2.2c)

(
∂

∂t
− V

∂

∂z
+ u · ∇

)
T = κf ∇2T . (2.2d)

In these equations, u is the velocity vector (u, v, w) measured relative to the solid,
P = p − ρ0 g · r , where p is the static pressure, ρ0 a reference density and r the
position vector, and 2Φ̇ × u is the Coriolis force. Note that in (2.2b) we have
ignored the centrifugal acceleration Φ̇ × (Φ̇ × r) as well as the tangential acceleration
Φ̈ × r . The relative significance of these two terms compared to gravity can be
measured by the ratio |Φ̇|2rc/g, where rc is the characteristic length measured from
the axis of rotation, approximately equal to the horizontal dimension of the system.
When the speed of spin or precession considered is smaller than 5 r.p.m. and rc is
about 25 cm (Coriell et al. 1984), the ratio is less than 0.01 and so the centrifugal
and tangential accelerations are negligible. Finally, C is the concentration, T the
temperature, Df the solute diffusivity, κf the thermal diffusivity, ν the kinematic
viscosity, and g = −g(sin φn sin φs, sin φn cos φs, cosφn) the gravity vector, depending
on both the inclination and spin angles, where g is the gravitational constant. Since
the Boussinesq approximation is applied, the fluid density is constant except in the
gravity term where the following relation holds:

ρ = ρ0(1 − α(T − Tm) − βC). (2.3)

In this equation α and β are respectively the thermal and solute expansion coefficients
and Tm is the freezing temperature of the pure solvent. In the solid region z <h, we
ignore the solute diffusion and consider only a heat balance. Thus, the governing
equation in the solid layer is (

∂

∂t
− V

∂

∂z

)
T = κs∇2T , (2.4)

where κs is the thermal diffusivity of the solid phase.
For the boundary conditions, we assume that the fluid in the far field experiences

a rigid-body rotation and both the concentration and temperature remain at their
original values. Or, equivalently, we assume that the residual melt remains so deep
that the influence of the possible deformation of the free surface at the top on the
fluid motion near the melt/solid interface can be ignored. Accordingly, at z → ∞
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we have

u → 0, C → C∞, T → T∞. (2.5a–c)

At the melt/solid interface z = h(x, y, t), the boundary conditions are

u × n = 0, u · n = 0, (2.6a, b)

C+(1 − k)

(
V +

∂h

∂t

)
ez · n = −Df

∂C+

∂n
, (2.6c)

T+ = mC+ + Tm(1 − Γ K), T+ = T−, (2.6d, e)

Lh

(
V +

∂h

∂t

)
ez · n = ks

∂T−

∂n
− kf

∂T+

∂n
, (2.6f )

where n is the normal vector to the melt/solid interface directing toward the melt
and the subscripts + and − denote respectively quantities just above and below
the interface. Equation (2.6a) is the no-slip condition. Equation (2.6b) represents the
conservation of mass at the interface in which we have neglected the density difference
between the solid and liquid phases. Equation (2.6c) represents the conservation of
solute at the interface, where k = C−/C+ is known as the segregation or partition
coefficient. Equation (2.6d) is the thermodynamic equilibrium condition describing
the dependence of the freezing temperature of a binary alloy upon its composition,
where m is the liquidus slope (assumed to be a constant). In (2.6d) we have also
included the capillary effect (the Gibbs–Thompson effect), where Γ is the capillary
length and K is the curvature of the interface (assumed negative for a concave
projection into the melt). Equation (2.6e) is the continuity of temperature across the
interface. Finally, equation (2.6f ) is the energy balance at the interface, where ks and
kf are the thermal conductivity of the solid and fluid phases respectively, and Lh is
the latent heat per unit volume of the solid.

The governing equations and boundary conditions are made dimensionless with
the solute-field scales: V for velocity, Df /V for length, Df /V 2 for time, C∞ for
concentration, Tm for temperature, and νρ0V

2/Df for pressure. When making the
temperature dimensionless, we subtracted Tm from the dimensional temperature before
dividing it with the scale. The dimensionless governing equations in the fluid region are

∇ · u = 0, (2.7a)

1

Sc

[
∂

∂t
− ∂

∂z
+ u · ∇

]
u = ∇2u − ∂p

∂x
+ (RcC + RtT )SnSs(t)

+
[
(−1)npT 1/2

ap Cn + (−1)ns T 1/2
as

]
v −

[
(−1)npT 1/2

ap SnCs(t)
]
w,

(2.7b)

1

Sc

[
∂

∂t
− ∂

∂z
+ u · ∇

]
v = ∇2v − ∂p

∂y
+ (RcC + RtT )SnCs(t)

−
[
(−1)npT 1/2

ap Cn + (−1)ns T 1/2
as

]
u +

[
(−1)npT 1/2

ap SnSs(t)
]
w,

(2.7c)

1

Sc

[
∂

∂t
− ∂

∂z
+ u · ∇

]
w = ∇2w − ∂p

∂z
+ (RcC + RtT )Cn

+
[
(−1)npT 1/2

ap SnCs(t)
]
u −

[
(−1)npT 1/2

ap SnSs(t)
]
v, (2.7d)
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∂

∂t
− ∂

∂z
+ u · ∇

)
C = ∇2C, (2.7e)

1

Le

(
∂

∂t
− ∂

∂z
+ u · ∇

)
T = ∇2T . (2.7f )

The dimensionless heat equation in the solid region is

1

Ls

(
∂

∂t
− ∂

∂z

)
T = ∇2T . (2.8)

In these equations, Sc ≡ ν/Df is the Schmidt number, Le ≡ κf /Df the Lewis number
of the fluid phase and Ls ≡ κs/Df the Lewis number of the solid phase. In addition,
Rc and Rt are respectively the solutal and thermal Rayleigh numbers defined based
on the solute-field length scale H ≡ Df /V :

Rc ≡ gβC∞H 3

νDf

, Rt ≡ gαTmH 3

νDf

,

and Tap and Tas , which account for the intensity of rotation, are the Taylor numbers
of precession and spin defined respectively as

Tap ≡
(

2H 2φ̇p

ν

)2

, Tas ≡
(

2H 2φ̇s

ν

)2

.

For simplicity, we have adopted the abbreviations Sn ≡ sinφn, Cn ≡ cosφn, Ss(t) ≡
sin(Ωt) and Cs(t) ≡ cos(Ωt), where Ω is the dimensionless angular velocity of spin
related to Tas by Ω ≡ Sc(−1)ns T 1/2

as /2. Note that the exponents np and ns account for
the sense of precession and spin respectively: φ̇p > 0 corresponds to np = 0, φ̇s > 0

to ns = 0, φ̇p < 0 to np = 1, and φ̇s < 0 to ns = 1.
The dimensionless boundary conditions in the far field z → ∞ are

u → 0, C → 1, T → T∞, (2.9a–c)

and those at the melt/solid interface z = h(x, y, t) are

u × n = 0, u · n = 0, (2.10a, b)

(k − 1)C+

(
1 +

∂h

∂t

)
ez · n = ∇C+ · n, (2.10c)

T+ = MC+ − UK, T− = T+, (2.10d, e)

S
(

1 +
∂h

∂t

)
ez · n = (Ls∇T− − Le∇T+) · n. (2.10f )

Here the parameter M ≡ mC∞/Tm is the dimensionless liquidus slope, U ≡ Γ V/Df is
the dimensionless capillary length, and S ≡ L/Tm(ρcp)− is the Stefan number. Note
that in (2.10f ) we have neglected the difference of the specific heats between the solid
and liquid phases.

3. The basic-state: the flow induced by inclination
To obtain the basic state before the onset of instability occurs, we assume that the

horizontal dimension L of the system is much larger than the characteristic length
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scale H ≡ Df /V . As a result, one obtains from the scale analysis of the continuity
equation that U/L ≈ W/H , where U and W are the characteristic velocities in the
horizontal and vertical directions, respectively. We assume also H � L and obtain
W � U , or the z-component velocity is negligible. Note that the assumption H � L

also implies that the diffusion in the horizontal direction is negligibly small compared
to that in the vertical direction, namely ∂2/∂x2 � ∂2/∂z2 and ∂2/∂y2 � ∂2/∂z2.

We assume further that the advection terms in (2.7b–d) are also negligible in the
basic state. This assumption is valid under different rotation situations. First, for
the system rotating by inclined precession, because the precession speed φ̇p is

independent of time, the time scale of solidification Df /V 2 dominates the basic state
before any small-scale fluid motion occurs due to the convective or morphological
instability. The unsteady term ∂/∂t , if it exists, would be of the same order of
magnitude as the term measuring solidification (the second term on the left-hand side
of (2.7b–d)). Therefore, to neglect the advection term, the advection term must be
much smaller than the solidification term, or L/H � U/V . On the other hand, for
the system rotating by inclined spin with or without precession, the advection term
is also negligible compared to the solidification term if the condition L/H � U/V

holds. Moreover, the advection term can also be ignored due to another factor.
Because the spin speed φ̇s depends on time and so do the gravity and Coriolis terms
in the equations, physically both the gravity vector and the induced flow change
direction periodically with the angular frequency of spin, so that the time scale
of spin becomes dominant when the corresponding Strouhal number is sufficiently
large, or φ̇sL/U � 1. The advection term therefore can be neglected compared to the
unsteady term due to spin. For the parameter ranges corresponding to the lead–tin
alloy considered in this paper, it is much easier to meet the condition of a large
Strouhal number than to meet L/H � U/V , which will be discussed in more detail
at the end of the section.

Given the assumptions above and owing to the inclination (see the third term on the
right-hand side of (2.7b, c)), there is a basic flow induced by the gravity component
in the (x, y)-plane (or along the melt/solid interface). Since the induced flow turns
out to be parallel to the (x, y)-plane, the basic-state temperature and concentration
are not affected, remaining similar to those found in previous studies (for example,
McFadden et al. 1988; Davis 1990; Forth & Wheeler 1989, 1992). The basic-state
solutions are given in the following. The planar interface is located at

hb = 0. (3.1)

The solute and temperature distributions in the bulk melt region are

Cb = 1 − Gce
−z, z > 0, (3.2)

Tb = T∞ − LeGle
−z/Le , z > 0, (3.3)

where the local gradients of concentration and temperature are defined respectively
as

Gc =
k − 1

k
, (3.4)

Gl =
T∞ − M/k

Le

. (3.5)
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In the solid region, the concentration is uniform while the temperature increases
exponentially with height, namely

Cb = 1, z < 0 (3.6)

Tb = T∞ + S − (S + LeGl)e
−z/Ls , z < 0. (3.7)

For the basic flow, the z-component is zero as a result of the assumption made at the
beginning of the section, i.e.

wb = 0. (3.8)

The other two velocity components are obtained by the following procedure. Since the
fluid in the far field is assumed to move as a rigid body with the solid, a consideration
of (2.9a–c) suggests the basic-state pressure is of the form

pb = p̄b(z, t) + (Rc + RtT∞)[xSnSs(t) + ySnCs(t) + zCn], (3.9)

where the reduced pressure p̄b is obtained by substituting (3.9) into (2.7d), yielding

∂p̄b

∂z
=

[
(−1)npT 1/12

ap SnCs(t)
]
ub −

[
(−1)npT 1/2

ap SnSs(t)
]
vb + [Rc(Cb − 1) + Rt (Tb − T∞)]Cn.

(3.10)

Note that the z-component of the basic-state pressure gradient balances the z-
component of the fluid weight in the whole melt and the x- and y-components of
the pressure gradient also balance the corresponding components of the fluid weight
in the far field. Consequently, the melt is motionless in the z-direction, i.e. wb =0
and quiescent in the far field. The pressure gradient cannot balance the fluid weight
along the (x, y)-plane, which induces a basic flow along the (x, y)-plane, which is then
modified by the Coriolis force due to rotation. The basic velocity components ub and
vb are obtained by substituting (3.8) and (3.9) into (2.7b, c), yielding

ub + ivb = Ub(z)e
iφg , (3.11)

in which i =
√

−1 and Ub(z) is the amplitude of the basic-state velocity

Ub(z) = −SnRcGc


c

exp(iφc − z) − SnRtLeGl


t

exp(iφt − z/Le)

+

[
SnRcGc


c

eiφc +
SnRtLeGl


t

eiφt

]
exp(−ibz − z/dE) (3.12a)

and φg is the phase angle of the gravity vector

φg = −
(
Ωt + 1

2
π
)
. (3.12b)

The remaining parameters in (3.12a) are defined as follows:

dE = 1

/(
1

2Sc

+ a

)
, (3.13a)

a =

[(
1

S2
c

+

√
1

S4
c

+ 16T 2
e

)/
8

]1/2

, b =
Te

|Te|

[(
− 1

S2
c

+

√
1

S4
c

+ 16T 2
e

)/
8

]1/2

,

(3.13 b, c)


c =
(
(1 − 1/Sc)

2 + T 2
e

)1/2
, (3.13d)
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cosφc =
1 − 1/Sc


c

, sinφc =
Te


c

, (3.13e, f )


t =
(
((1/Le − 1/Sc)/Le)

2 + T 2
e

)1/2
, (3.13g)

cosφt =
(1/Le − 1/Sc)/Le


t

, sinφt =
Te


t

, (3.13h, i)

in which Te is the effective Taylor number defined as

Te ≡ (−1)npT 1/2
ap Cn +

(−1)ns

2
T 1/2

as . (3.14)

Through the definition of this parameter the combined effect of precession and
spin, which may have the same or opposite direction of rotation, can be absorbed
into a single physical term. Physically, a larger Te accounts simply for a higher
rotation speed and vice versa. With this parameter, the effect of inclined rotation by
precession and/or spin on the amplitude of induced velocity can be understood in a
more straightforward sense.

Equations (3.11) and (3.12) indicate that the induced flow increases in amplitude
with the inclination angle and varies in direction periodically with time at a frequency
equal to the spin angular speed Ω . Furthermore, the induced velocity changes with
height and is composed of three regions with different length scales. The first region
(varying with e−z) has the length scale of the solute boundary layer and will be
termed the solutal-layer flow. The second region (varying with e−z/Le ) has the length
scale of the thermal boundary layer and will be termed the thermal-layer flow. The
third region (varying with e−z/dE ) has the length scale of Ekman-layer spiral flow
and changes direction with a period 2π/b, and will be termed the Ekman-layer flow.
A larger speed of rotation (i.e. a larger Te) results in a larger value of b and thus
a shorter turnover period of Ekman-layer flow. Note that dE → Sc and b → 0 when
Te → 0, implying that the Ekman-layer flow will be reduced to a boundary-layer flow
under asymptotic suction with the length scale Sc. Note that it can be seen from (3.13)
that the induced velocity is still of finite value even if Te → 0.

To illustrate these three regions of the induced flow, we display in figure 2 their
distributions with height for Te = 10. For all the computations in this paper, the values
of the parameter used are listed in table 1, which correspond to the lead–tin alloy
considered by Coriell et al. (1980). In figure 2(a), one can see that the velocities of
both the solutal-layer and the Ekman-layer flows decrease exponentially with height.
The magnitude of the thermal-layer flow velocity remains virtually constant near the
melt/solid interface because the large Lewis number considered has resulted in a
deep thermal boundary layer. It is evident from figure 2(b) that both the solutal-layer
and thermal-layer flows do not change direction whereas the Ekman-layer flow
changes direction periodically with height. Note that in figure 2(b) we have adopted
φg , the orientation of the gravity component in the (x, y)-plane, as the reference angle
to measure the flow direction. To illustrate the spiral structure of the flow, we show
the velocity vector of the induced flow in figure 2(c). The induced flow in the far
field remains in the (x, z)-plane, while near the interface it has a component in the y-
direction. The direction of the thermal-layer flow on the interface is virtually opposite
to that of the Ekman-layer flow, and the combination of these two flows results in a
flow of small magnitude, which is then diminished by the solutal-layer flow, leading



Directional solidification under inclined rotation 391

5

4

3

2

1

0 5 10 15

Ekman

Thermal

(a)

z

|Ub | /Sn

Solute

Ekman
Thermal

(b)

0 60 120 180 240 300 360
φU – φg (deg.)

(c)

–10

–5

0 –4

–2

0

5

z

x

y

g

Figure 2. The velocity distributions of the three components of the induced basic flow at
Te = 10. (a) The amplitude. (b) The phase angle relative to the gravity component in the
(x, y)-plane. Note that the Ekman-layer flow varies periodically with height with a period of
2π/b. (c) The velocity vectors of the induced spiral flow.

Sc 81
Le 3600
Ls 6700
Rc 10
Rt 250
U∗ 6.131 × 10−4

k 0.3
Gl 10−4

S 0.29

Table 1. The physical parameters used in the numerical calculations
corresponding to a lead–tin alloy.
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Figure 3. (a) The amplitudes of the induced flow velocities for different Te . (b) The variation
of the phase angle relative to the gravity component in the (x, y)-plane for different Te .

to the no-slip condition at the interface. At z ≈ 1.4, however, the Ekman-layer flow
and the thermal-layer flow are in the same direction, resulting in the largest amplitude
of the induced flow velocity.

In figure 3, the induced flow is illustrated for different values of Te. Results show that
the velocity decreases as Te increases, indicating that the induced flow is inhibited by
a higher spin or precession speed under the action of the Coriolis force. On the
other hand, the velocity increases with the inclination angle φn, implying that
the gravity component in the (x, y)-plane is a main factor driving the flow. The flow
direction changes with height; the relative phase angle φU − φg decreases from
approximately 310◦ to 270◦ and ultimately remains the same in the rest of the fluid
region, where the flow leads gravity by 90◦ (i.e. φU −φg =270◦) and this feature applies
to all the cases considered in the present paper.

Before proceeding to the stability analysis, it is worth examining the validity of
the basic-state solution, which was derived based on the assumption that the system
has a much larger horizontal dimension L than the length scale of solidification
H =Df /V . Consequently, as stated at the beginning of this section, in order to
neglect both the horizontal diffusion and the vertical component of the basic velocity,
it is necessary to have L/H � 1. And in order to ignore the advection term of
the basic flow, another requirement is L/H � U/V when the system rotates with
precession, and the smaller of L/H � U/V and φ̇sL/U � 1 when the system rotates
with spin with/without precession. Note that the last condition can be rewritten
as L/H � U/ φ̇sH =2U/ScT

1/2
as V , corresponding to the Strouhal number. Given the

parameter values in table 1, we find that the magnitude of the basic flow is ultimately
dominated by the thermal-layer flow, i.e. U/V ∝ SnRtLeGl/
t , which has a value
about 5 when the rotation speed (in terms of Te) is 5 r.p.m. and the inclination angle
is 30◦ (see figure 3). Therefore, to ignore the advection term for the precession case,
the requirement is L/H � 5, which is only a little more rigorous than the condition
L/H � 1 needed for ignoring both the horizontal diffusion and vertical velocity, but
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is still practical physically because H is generally of magnitude about 1 cm. On the
other hand, when spin is imposed at 5 r.p.m. and 30◦, a large Strouhal number
L/H � U/ φ̇sH = 2U/ScT

1/2
as V yields approximately L/H � 1/Sc. Since the Schmidt

number is generally quite large (Sc = 81 in the present paper), this condition will be
much easier to satisfy than L/H � U/V ≈ 5. Note that the condition L/H � 1/Sc is
even less rigorous than L/H � 1 and so the aspect ratio adequate for the spin case is
eventually determined by L/H � 1. In summary, for the case where the system rotates
with precession only, the requirement for the validity of the basic flow is L/H � U/V ,
whereas for the case where the system rotates with spin with/without precession, it is
L/H � 1. Both are practical physically.

4. Linear stability analysis
We investigate the linear stability of the basic state by focusing particularly on the

effects of inclined rotation. To simplify the analysis, the frozen temperature assumption
(Langer 1980; Davis 1990; Forth & Wheeler 1989, 1992) is employed, in which the
temperature is fixed at its basic-state value. We introduce small perturbations together
with the basic state into (2.7a–e) and then neglect the products of small quantities
to obtain the linear perturbation equations. After eliminating the pressure and the
velocities in both the x- and y-directions, the linear perturbation equations in the fluid
region are (

∂

∂t
− ∂

∂z
+ ub

∂

∂x
+ vb

∂

∂y
− ∇2

)
C = −C ′

bw, (4.1a)
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[
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∂
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− Ss(t)

∂
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]
C. (4.1c)

The associated boundary conditions at z → ∞ are

C → 0, w → 0,
∂w

∂z
→ 0, ζ → 0. (4.2a–d)

The boundary conditions at the perturbed melt/solid interface are transformed to the
fixed position z = 0, yielding

∂C

∂z
− (k − 1)C = Gc

(
∂h

∂t
+ kh

)
, (4.3a)
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C

Gc

=

(
1

Sk

− 1 − U∗∇2
H

)
h, (4.3b)

w = 0, (4.3c)

∂w

∂z
= u′

b

∂h

∂x
+ v′

b

∂h

∂y
, (4.3d)

ζ = u′
b

∂h

∂y
− v′

b

∂h

∂x
. (4.3e)

In these equations, C is the concentration, w and ζ are respectively the velocity and
vorticity in the z-direction, and h = h (x, y, t) is the interface perturbation, (all of these
are small perturbation quantities), and ∇2

H = ∂2/∂x2 + ∂2/∂y2 is the two-dimensional
Laplace operator. In (4.3b), there are two new dimensionless parameters: the modified
capillary parameter U∗ and the Sekerka number Sk , measuring the intensity of the
supercooling effect at the interface. They are defined as

U∗ = U/MGc, Sk = MGc/Gl. (4.4a, b)

The governing equations (4.1) subject to the boundary conditions (4.2) and (4.3) need
to be solved by different approaches depending on whether spin is applied. For the
case where the system rotates with precession only, the basic flow is stationary; for
the case where the system rotates with spin with/without precession, the basic flow
is periodic in time. The details of these two approaches are given in the following
subsections.

4.1. Linear stability analysis: rotation by inclined precession

When the system rotates with inclined precession, the coefficients of (4.1) are functions
of z only. We can apply the normal-mode expansions to the disturbances by
employing


C(x, y, z, t)

w(x, y, z, t)

ζ (x, y, z, t)

h(x, y, t)


 =




Ĉ(z)

ŵ(z)

ζ̂ (z)

ĥ


 exp[(ωr + iωi)t + i(αxx + αyy)] + c.c., (4.5)

where ωr and ωi are the growth rate and the oscillatory frequency of the disturb-
ances respectively, and αx and αy are the wavenumbers in the x- and y-directions
respectively. After substituting these expansions into (4.1), we transform the governing
equations into the ordinary differential equations

[D2 + D − (ωr + α2) − i(ωi + αxub + αyvb)]Ĉ = C ′
bŵ, (4.6a)
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in which the operator D denotes differentiation with respect to z. The associated
boundary conditions at z = 0 become

DĈ −
[
(k − 1)(F + 1) + 1 + ωr

F
+ i

ωi

F

]
Ĉ = 0, (4.7a)

ŵ = 0, (4.7b)

Dŵ − i

(
αxu

′
b + αyv′

b

FGc

)
Ĉ = 0, (4.7c)

ζ − i

(
αyu

′
b − αxv′

b

FGc

)
Ĉ = 0, (4.7d)

where F is a function defined as

F =
1

Sk

− 1 + U∗α2, (4.7e)

in which α =
√

α2
x + α2

y is the wavenumber. The boundary conditions at z → ∞ are

Ĉ → 0, ŵ → 0, Dŵ → 0, ζ̂ → 0. (4.8a–d)

Since both αx and αy appear in both (4.6) and (4.7c, d), these equations are not
symmetric in the x- and y-directions. This asymmetry arises from the action of three
factors. The first is the gravity component in the (x, y)-plane corresponding to the
terms containing SnRc on the right-hand side of (4.6b, c). The second is the precession
component in the (x, y)-plane corresponding to the terms containing SnT

1/2
ap in (4.6b, c).

The last is the basic-state spiral flow, leading to the appearance of αx and αy together
with the basic-state velocities ub and vb in (4.6) and (4.7c, d). Since αx = α cos(φα)
and αy = α sin(φα), where φα is the angle between the propagation direction of the
instability mode and the x-axis, one needs to consider −180◦ � φα � 180◦ for a
complete analysis. But owing to the complex conjugate of the expansions in (4.5),
one need only take −90◦ � φα � 90◦ into account. Equations (4.6) to (4.8) constitute
a complex eigenvalue problem, which can be solved by a shooting technique (see
Chung & Chen 2000). In numerical calculations, the truncation height of the system
is set to a finite value (Coriell et al. 1980, 1984), which depends on the value of α.
When α = O(5), choosing the truncation height equal to 20 gives a deviation of Sk

less than O
(
10−4

)
. When α = O(0.5), the truncation height needs to be about 100 to

retain the same accuracy of Sk .

4.2. Linear stability analysis: rotation by inclined spin with/without precession

When inclined spin is imposed, the basic flow becomes a periodic function of time,
varying by a frequency equal to the spin angular velocity Ω . Consequently, (4.1)
contains time-dependent coefficients and needs to be handled with the Floquet theory
by expanding the time-dependent variable into a complex Fourier series in time. We
found when applying normal-mode expansions that αx and αy always appear with
the following forms:

αx sin(Ωt) + αy cos(Ωt) = α sin(Ωt + φα) = α sin(Ωt ′), (4.9a)

αy sin(Ωt) − αx cos(Ωt) = −α cos(Ωt + φα) = −α cos(Ωt ′), (4.9b)

where t ′, defined as

t ′ = t +
φα

Ω
, (4.10)
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is the time shift for the instability mode propagating in the direction of φα . With this
new variable, φα is removed from the equations after the normal-mode expansion is
applied. This implies that the disturbances propagating in different directions have
the same stability characteristics; the only difference between them is the temporal
phase ∆φα/Ω . Physically, the gravity vector, the precession vector and the basic flow
change their directions synchronously with the spin. As a result, all the disturbances
will sense the effects of these three mechanisms within a certain period of time,
and the symmetric situation in the (x, y)-plane therefore holds; accordingly, this
will be called ‘stability symmetry in the (x, y)-plane’ hereafter. Note that these three
mechanisms have caused the asymmetry in the case of inclined precession mentioned
in the previous subsection.

After applying the Floquet theory and the normal-mode expansions

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(4.11)

(4.1) are transformed into the ordinary differential equations
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The associated boundary conditions at z = 0 are transformed into

DCl −
[
(k − 1)(F + 1) + 1 + ωr

F
+ i

ωi + lΩ

F

]
Cl = 0, (4.13a)

wl = 0, (4.13b)

Dwl − f41(0)

FGc

(Cl−1 − Cl+1) − i
f42(0)

FGc

(Cl−1 + Cl+1) = 0, (4.13c)
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ζl − f31(0)

FGc

(Cl−1 − Cl+1) − i
f32(0)

FGc

(Cl−1 + Cl+1) = 0. (4.13d)

The boundary conditions at z → ∞ become

Cl → 0, wl → 0, Dwl → 0, ζl → 0. (4.14a–d)

The coefficients fmn, m =1, 2, 3, 4 and n = 1, 2, are functions of the basic-state
velocity, and given in the Appendix. Note that because the maximum value of
the index l needs to be taken as a finite value Ln, (4.12) is a set of simultaneous
ordinary differential equations of order 16Ln +8 in the computations. Equation (4.12)
along with the boundary conditions (4.13) and (4.14) constitute a complex-eigenvalue
problem, which can be solved by the shooting technique (Chung & Chen 2000).

5. Stability characteristics under inclined rotation
There are five physical mechanisms affecting the stability of the present system.

First, the reduction of buoyancy in the z-direction (i.e. the direction of the basic density
gradient) due to inclination is a stabilizing factor (Chung & Chen 2000). Secondly,
the gravity (buoyancy) component in the (x, y)-plane (parallel to the melt/solid
interface) due to inclination is destabilizing. Thirdly, the rotation component in
the z-direction contributed by spin and/or precession corresponding to the Coriolis
force parallel to the (x, y)-plane is stabilizing. The fourth is the induced helical
flow and the last is the precession component in the (x, y)-plane. It was shown
by Kropp & Busse (1991), Busse & Kropp (1992) and Matthews & Cox (1997)
that an imposed shear flow or a rotation vector on the (x, y)-plane is stabilizing
when they act individually. However, when acting simultaneously, they may together
play a stabilizing or a destabilizing role depending on their relative orientation and
amplitude ratio. Similarly, the interaction between basic flow and precession can also
apply to the present system. In addition, we note that both the buoyancy reduction
in the z-direction and the rotation component in the z-direction have a ‘symmetric
action’, affecting all instability modes equally in different directions. The other three
mechanisms, however, may or may not act symmetrically depending on whether
spin is imposed. More precisely, when the system rotates with precession only, these
three mechanisms have stationary-oriented components on the (x, y)-plane, which
consequently destroy the stability symmetry in the (x, y)-plane. But nevertheless,
when the system rotates with spin with/without precession, these three mechanisms
change direction periodically with the same frequency of spin and thus all instability
modes travelling in different directions can feel their effects periodically. In this
instance the stability symmetry in the (x, y)-plane holds.

We examine the stability characteristics of the system under four different kinds
of rotation: (i) vertical, (ii) inclined precession, (iii) inclined spin, and (iv) inclined
spin and precession. These four cases are influenced by either part or all of the five
stability mechanisms discussed above. The physical values considered are shown in
table 1, corresponding to lead–tin alloy (Coriell et al. 1980).

5.1. System rotating vertically

Since the system rotates vertically, there is no induced basic flow (Lu & Chen 1997)
so that the number of physical parameters involved is much reduced. Specifically, in
(4.6) and (4.7), since Sn = 0 and ub = vb = 0, the linear perturbation equations are
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Figure 4. The neutral curves in terms of the Sekerka number Sk and the wavenumber α and
the wave speeds cr of different instability modes for the case of vertical rotation (φn = 0). The
grey shading shows the unstable region. The labels UM, M1, M2, C1, C2, X1 and X2 denote
modes of different stability characteristics. (a, b) Ta = 0, (c, d) Ta = 1, (e, f ) Ta = 4.

thus independent of φα so that the symmetry in the (x, y)-plane holds. In addition,
the spin Taylor number Tas and the precession Taylor number Tap can be combined
into a single Taylor number Ta .

The numerical results are shown in figure 4, illustrating three cases with different
Taylor numbers: Ta = 0, 1 and 4. Figures 4(a), 4(c) and 4(e) show the neutral curves
of the morphological modes M1, M2 and UM (thin curves), the convective modes C1
and C2 (thick curves) and the mixed modes X1 and X2 (dotted curves); figures 4(b),
4(d) and 4( f ) show the corresponding wave speeds cr = −ωi/α. In this figure and the
subsequent ones, for convenience we have adopted the same labels as used by Forth
& Wheeler (1992) to denote the instability modes and grey shading to denote the
unstable region. To help find the physical meaning of these figures, we discuss first
the case of α = 0.5 and Sk = 5 in figure 4(a), which is morphologically unstable to
mode M2. When Sk decreases to a value below the neutral curve of mode M2, the
system becomes unstable to mode C1. For a higher wavenumber, for example α = 10
and Sk = 5, the system is unstable to mode M1. When the value of Sk decreases below
the critical value, while remaining positive, the system becomes stable. If the value
of Sk continues to decrease to zero and becomes negative, then the system becomes
morphologically unstable to mode UM. Note that the neutral curves of modes X1,
X2 join M1 to form C2, and join C1 to form M2. Moreover, the coalescence of the
neutral curves makes the wave speeds of modes X1 and X2 separate into two distinct
branches: the wave speed of the left branch is generally larger than that of the right
branch (see the dotted curves of figure 4(b).

Figure 4(a), similar to figure 7 of Forth & Wheeler (1992), corresponds to a
case without rotation, in which the interaction between the convective mode and
morphological mode dominates the system. The neutral curves exhibit a so-called
folding structure for the X1 and X2 modes: they have the same stability criteria but
travel in opposite directions, i.e. X1 moves forward with wave speed +cr and X2
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Figure 5. The neutral curves in terms of the Sekerka number Sk and the wavenumber α
and the wave speeds cr of different stability modes for the case of inclined precession for
various propagating angle φα , where φn = 10◦ and Tap = 1. (a, b) φα = 90◦, (c, d) φα = 50◦,
(e, f ) φα = 0◦, (g, h) φα = −74◦, (i, j ) φα = −80◦.

moves backward with wave speed −cr . The neutral curves of the stationary modes C1
and M1 coalesce with those of X1 and X2, forming two new stationary modes M2 and
C2. The UM mode is also stationary but is physically unrealistic because it occurs in
the region of non-positive Sekerka number. According to Forth & Wheeler (1992), the
C1 mode is characterized by the flow rising from the troughs of the deformed interface
and descending towards the peaks, whereas the M1 mode circulates in the opposite
sense. Owing to the interaction between these two modes, the buoyancy-driven rising
plume is shifted laterally between the trough and the peak and the interface tends
to freeze on one side while dissolving on the other side of the trough, leading to the
formation of the travelling modes X1, X2.

We consider two cases when vertical rotation is applied: Ta = 1 and Ta = 4 which
are equivalent to rotation speeds of 0.5 r.p.m. (figure 4c, d) and 1 r.p.m. (figures 4e, f )
respectively. Results show that, due to vertical rotation, the neutral curves of modes
C1 and X1, X2 become disconnected and M2 disappears. This is because modes
C1 and X1, X2 are stabilized by vertical rotation through the action of the Coriolis
force, as is commonly found in the similar system of buoyancy-driven convection (for
example Lu & Chen 1997). The M1 mode is virtually unaffected due to its short
characteristic wavelength compared to the convective modes (Forth & Wheeler 1992).
This implies a situation where M1 will eventually dominate C1 once the vertical
rotation speed becomes large enough, as can be seen in figure 4(e). The wave
speeds of X1 and X2 also decrease with increasing rotation speed due to the
stabilization by the Coriolis force.

5.2. System rotating by inclined precession

As mentioned in § 4.1, when the system rotates with inclined precession the stability
is orientation-dependent so that it is necessary to consider −90◦ � φα � 90◦ for
a complete analysis. It is impractical to consider many values of φα because of the
large computational effort required. We therefore choose the five representative values
φα = 90◦, 50◦, 0◦, −74◦ and −80◦ for illustration. Results are shown on figure 5 where
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the tilt angle and the precession speed are fixed respectively at φn = 10◦ and Tap = 1
(equivalent to 0.5 r.p.m.). In this case the buoyancy reduction and the precession
component in the z-direction have the same action on disturbances travelling in
different directions in the (x, y)-plane. In contrast, the gravity and the precession
components act in the y-direction only and the basic flow changes direction with
height from 220◦ (measured with respective to the x-axis) at the interface to 180◦ in
the far field, both breaking the stability symmetry in the (x, y)-plane.

By comparing figure 5 with figure 4, two stability effects due to inclined precession
are noticed. First, all the instability modes are oscillatory. Second, the neutral curve
of mode X1 (originally travelling forward with speed +cr ) is now smoothly connected
onto M1 to form M(X1) and that of mode X2 (originally travelling backward with
speed −cr ) is smoothly connected onto C1 to form C(X2). Similar phenomena can
be found in Forth & Wheeler (1992), who investigated the influence of a shear flow
imposed in the x-direction on the coupled convective and morphological instabilities
of a binary alloy. In the present system, like the imposed shear flow considered by
Forth & Wheeler, the simultaneous presence of the gravity and precession components
in the y-direction and the induced spiral flow has two similar effects: first, it induces
overstability in the modes; secondly, it destroys both the stability symmetry in the
(x, y)-plane and the folding structure between the X1 and X2 modes.

From the wave speeds in figures 5(h) and 5( j), one may infer that there is likely
to exist a marginal angle corresponding to a zero wave speed at which the forward
travelling mode M(X1) switches to the backward travelling mode M(X2) and the
backward travelling modes M1, C1 and C(X2) switch to the forward travelling modes
M1, C1 and C(X1), respectively. The marginal angle in the present case is possibly loc-
ated between φα = −74◦ and φα = −80◦, determined by the combination of the three
asymmetry-driving mechanisms, i.e. the induced flow, the precession and the grav-
ity. A similar result for the marginal angle was obtained by Forth & Wheeler
(1992), in which the marginal direction was perpendicular to the imposed shear flow
because the instabilities propagating in this direction could not ‘sense’ the imposed
flow.

Regarding the stability criterion, it is seen that the critical Sekerka number of mode
M1 is virtually independent of the propagating angle φα . In contrast, the criteria for
modes C1, C(X1) and C(X2) are quite sensitive to the variation of φα , namely both the
convective modes C1 and C(X2) are most unstable in the direction φα = 90◦ (parallel
with the y-axis) as shown in figure 5(a), and are largely suppressed along φα = 0◦

(parallel with the x-axis) as shown in figure 5(e). This is because, due to inclined
precession, both gravity and precession act in the y-direction only, so that they have
no effect on the modes travelling in the x-direction, whereas the modes travelling in
the x-direction are stabilized by the other three factors – the buoyancy reduction in the
z-direction, the rotation vector in the z-direction and the induced basic flow. Note that
for the case in figure 5(e) the basic flow plays a stabilizing role for the modes travelling
in the x-direction because the modes cannot ‘sense’ the precession component, which
in this instance is acting in the y-direction. For other modes propagating in directions
other than φα = 0◦, it is inferred that the interaction between the basic flow and the
precession component in the y-direction is destabilizing. This inference is made based
on the work of Matthews & Cox (1997), who examined buoyancy-driven convection
under the interaction of a horizontal rotation vector and an imposed shear flow,
finding that the imposed shear and rotation may together play a destabilizing role.
We will discuss the application of their work in more detail in the case involving both
precession and spin.
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Figure 6. The neutral curves in terms of the Sekerka number Sk and the wavenumber α
and the wave speeds cr of different stability modes for the case of inclined spin for various
inclination angles φn, where Ω = 80 and Tap = 0. (a, b) φn = 10◦, (c, d) φn = 20◦, (e, f )
φn = 25◦.

5.3. System rotating by inclined spin

In this case, the precession component in the (x, y)-plane is not active but the
other four mechanisms are. As in the previous cases, the buoyancy reduction in the
z-direction and the rotation component in the z-direction (equal to the spin vector
for the present case) will not interfere with the stability symmetry in the (x, y)-plane.
Moreover, because of spin, both the induced flow and the gravity component in
the (x, y)-plane change direction synchronously with the spin, namely the induced
flow and gravity component also rotate with the spin frequency Ω . It follows that
instability modes travelling in different directions will have an equal stability condition
and the system will retain the stability symmetry in the (x, y)-plane. Note also that
the basic flow velocity increases with increasing inclination angle and decreases with
increasing spin frequency Ω . Bearing these features in mind, we examine the system’s
stability under the effects of inclined spin.

We show in figure 6 the neutral curves for the case of Ω = 80 (equivalent to T 1/2
as ≈ 2

or 1 r.p.m. for the present system) with the inclination angle φn varying from 10◦ to
25◦. A major result of inclined spin is seen by comparing figure 6(a) with figure 4(a):
the mixed modes X1, X2 and the convective modes C1, C2 are largely stabilized while
the morphological mode M1 is slightly stabilized. When the inclination angle increases
(figure 6c, e), the stabilization due to inclined spin is enhanced. By comparing figure
6(a) with figure 5(a), we examine the difference between inclined spin and inclined
precession and find that the mixed modes X1, X2 and convective mode C2 absent
in the inclined precession case appear in the spin case. Both the folding structure of
the X1 and X2 modes and the stability symmetry in the (x, y)-plane destroyed in
the inclined precession case also reappear here. Note that C1, C2, M1 and UM have
cr = 0 (see figure 6b, d and f ), indicating that these modes move synchronously with
the motion of spin. On the other hand, X1 and X2 have cr �= 0, indicating that the
mixed modes move non-synchronously with spin and their frequencies are modulated
by ωi = −αcr (see equation (4.11)).
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Figure 7. The neutral curves in terms of the Sekerka number Sk and the wavenumber α and
the wave speeds cr of different stability modes for the case of inclined spin with precession for

various precession parameter (−1)npT
1/2
ap , where φn = 20◦ and Ω = 80. (a, b) (−1)npT

1/2
ap = −1,

(c, d) (−1)npT
1/2
ap = −0.8, (e, f ) (−1)np T

1/2
ap = 0.5, (g, h) (−1)npT

1/2
ap = 1.

5.4. System rotating by inclined spin and precession

We examine the stability characteristics for the case Ω = 80 (equivalent to T 1/2
as ≈ 2)

and φn = 20◦ for various values of (−1)npT 1/2
ap and the results are shown on figure 7.

In this case, all five stability mechanisms are active and because of spin they influence
equally all instability modes travelling in different directions. Consequently, the
stability symmetry in the (x, y)-plane and the folding structure of the mixed modes are
retained. Moreover, modes M1, C1 and C2 move synchronously with spin while X1
and X2 move non-synchronously. It is shown in figure 7 that the stability criterion of
mode M1 remains virtually the same for different Tap . The most-unstable mode is C1
occurring at (−1)npT 1/2

ap = −0.8 (figure 7c) and modes C1, C2, X1 and X2 are signi-

ficantly suppressed at other values of Tap , for example at (−1)npT 1/2
ap = −1 (figure 7a),

(−1)npT 1/2
ap = 0.5 (figure 7e) and (−1)npT 1/2

ap = 1 (figure 7g). The comparison of the
neutral curves of the C1 mode in figures 7(c), 7(e) and 7(g) indicates that C1 becomes
unstable at larger negative values of (−1)npT 1/2

ap because the stabilizing action due to

the rotation component in the z-direction (in terms of Taz = Cn(−1)npT 1/2
ap + T 1/2

as )

becomes smaller at larger negative values of (−1)npT 1/2
ap . However, this fails to explain

why the C1 mode in figure 7(a) is more stable than that of figure 7(c) despite
(−1)npT 1/2

ap = −1 in figure 7(a) being even more negative. A plausible explanation for
this can be obtained from the interaction between the basic flow and the precession
component in the (x, y)-plane, which is discussed in more detail below.

We summarize in figure 8 the stability characteristics in terms of the relationship
between Sc

k and (−1)npT 1/2
ap . The stable region, marked by the grey shading, is enclosed

by the critical stability curves of the M1, C1 and UM modes. The stability criterion
of the M1 mode is virtually unchanged on varying (−1)npT 1/2

ap . However, the C1 mode

is significantly stabilized when (−1)npT 1/2
ap > −0.5 but is slightly destabilized when

(−1)npT 1/2
ap < −0.5 except in a small region near (−1)npT 1/2

ap = −1 where the C1 mode
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Figure 9. The parameters |TeT
1/2
ap |, Taz and ψ versus the precession parameter (−1)npT

1/2
ap for

the cases of figure 7. The parameter |TeT
1/2
ap | is the amplitude ratio between precession and

the induced basic flow, Taz = Cn(−1)npT
1/2
ap + T

1/2
as is the rotation component along the height

of the system, and ψ is the angle between the direction of the precession component in the
(x, y)-plane and the induced flow at melt/solid interface.

is also stabilized. To interpret the stabilization of mode C1 in this small region, we
illustrated in figure 9 the variations of Taz, ψ and |TeT

1/2
ap | with (−1)npT 1/2

ap , where ψ

is the relative direction (in radians) of the basic flow measured with respect to the
precession component in the (x, y)-plane.

Although the direction of the basic flow changes with height in the Ekman layer,
it is reasonable to choose the representative value of ψ at the melt/solid interface
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because the convective mode is largely confined in the solute boundary layer near
the interface. The parameter |TeT

1/2
ap | is the ratio of the amplitude of the precession

component in the (x, y)-plane to that of the basic flow, which is obtained by (3.12)
in the limits of large Schmidt number Sc and large Lewis number Le. The results of
figure 9 show that the rotation component in the z-direction given by Taz decreases
with decreasing (−1)npT 1/2

ap , indicating that the stabilizing effect of Taz gradually dim-

inishes as (−1)npT 1/2
ap decreases. This explains why the convective C1 mode becomes

unstable as (−1)npT 1/2
ap decreases from figure 7(g) through 7(e) to 7(c). Note that in

figure 9 there are two zeros of |TeT
1/2
ap |, one at (−1)npT 1/2

ap = 0 and the other close to

(−1)npT 1/2
ap = −1, implying that the amplitude ratio between the basic flow and the pre-

cession component is quite large near these two points. Matthews & Cox (1997) inves-
tigated buoyancy-driven convection under the interaction between an imposed shear
flow and a rotation vector lying in the plane parallel to the shear flow. They found that
the convective instability tends to be suppressed when the following two conditions
both hold: (1) the shear flow is relatively strong compared to the rotation and (2)
these two mechanisms have virtually the same direction of vorticity (see figure 5 of
Matthews & Cox 1997); Applying their findings to our case, to have the same direction
of vorticity the relative orientation measured from the precession component in the
(x, y)-plane to the basic flow needs to be close to 90◦. Because the relative orientation
in the region −1 � (−1)npT 1/2

ap < 0 shown in figure 9 is about ψ ≈ 60◦ and the basic

flow is relatively strong compared to the precession component near (−1)npT 1/2
ap = −1

and 0 where |TeT
1/2
ap | → 0, we infer that the interaction between the basic flow and

the precession component in the (x, y)-plane is stabilizing to mode C1 near these two
points. This then is the reason why the C1 mode becomes more stable in figure 7(a)
where (−1)npT 1/2

ap = −1 than in figure 7(c) where (−1)npT 1/2
ap = −0.8. For more-

negative values of (−1)npT 1/2
ap than −1, as shown in figure 9 the relative orientation

becomes ψ ≈ −45◦, indicating that the precession component in the (x, y)-plane and
the shear flow have virtually oppositely directed vorticity and so the interaction
between them becomes destabilizing, making mode C1 become unstable again.

To further elucidate this scenario, we illustrate another example by comparing
figure 7(e) to figure 6(c). Both cases have Ω = 80 and φn = 20◦, while figure 6(c) has
(−1)npT 1/2

ap = 0 and figure 7(e) has (−1)npT 1/2
ap = 0.5, namely both cases have the same

intensity of buoyancy reduction in the z-direction and the same gravity component in
the (x, y)-plane but the stabilizing rotation vector in the z-direction in the inclined-
spin case (figure 6c) is weaker than that in the inclined-spin-with-precession case
(figure 7e). The comparison shows that the critical value of the C1 mode in figure 6(c)
is about Sk = −6 and in figure 7(e) about Sk = −3, indicating surprisingly that C1
is more stabilized in figure 6(c) although the rotation vector in the z-direction is
weaker there. This result also can be explained by taking into account the interaction
between the basic flow and the precession component in the (x, y)-plane. For the
inclined-spin case in figure 6(c), there is no precession applied, i.e. (−1)npT 1/2

ap =0,
so the basic flow is itself a stabilizing factor. In contrast, for the inclined-spin-with-
precession case of figure 7(e), the value (−1)npT 1/2

ap = 0.5 corresponds to ψ ≈ −130◦

as shown in figure 9, implying that the precession component and the basic flow have
virtually oppositely-directed vorticity and they together play a destabilizing role. In
words, the destabilizing action due to the collaboration of the precession component
in the (x, y)-plane and the basic flow has prevailed over the stabilizing action by the
rotation vector in the z-direction for the case in figure 7(e), rendering mode C1 more
stabilized in figure 6(c).
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6. Conclusions
We have analysed the stability characteristics of a directionally solidifying binary

alloy under inclined rotation. Before the onset of instability occurs, the basic state
is mainly a strong helical shear flow induced by the inclination and modified by
the rotation, moving along the melt/solid interface. The corresponding basic-state
temperature and concentration remain the same as those where the system is vertical
with/without rotation. The induced helical flow, which increases in magnitude with
increasing inclination angle and decreases with increasing rotation speed, consists of
three components: the solutal-layer flow, the thermal-layer flow and the Ekman-layer
flow. For a lead–tin alloy with large Lewis number, the thermal-layer flow ultimately
dominates the velocity away from the melt/solid interface. The solutal-layer flow is
confined in the shallow solute layer above the interface, decaying from the interface
with the length scale of Df /V , and the Ekman-layer flow is confined in the Ekman
layer above the interface with depth virtually inversely proportional to Te. Relative
to the solid, the basic flow is steady when only inclined precession is applied, while it
changes direction periodically with the spin frequency once inclined spin is imposed.

The linear stability analyses shows that in the present system there are five
mechanisms collaborating or competing to influence the stability of the system.
They are:

(i) the reduction of buoyancy along the height of the system (i.e. along the direction
of the basic density gradient) due to inclination;

(ii) the rotation vector along the height of the system due to either spin or
precession, which corresponds to the Coriolis force acting parallel to the (x, y)-plane;

(iii) the gravity (buoyancy) component in the (x, y)-plane due to inclination;
(iv) the rotation component in the (x, y)-plane, which can be generated only by

inclined precession;
(v) the spiral basic-state flow induced by inclination and modified by rotation.

Of these five driving mechanisms, the first and second are stabilizing and the third is
destabilizing; the last two play a stabilizing or destabilizing role, depending on their
relative orientation and amplitude ratio. The first and second mechanisms will not
interfere with the stability symmetry in the (x, y)-plane or the folding structure of the
mixed modes, whereas the other three mechanisms may or may not destroy the stability
symmetry in the (x, y)-plane and the folding structure of the mixed modes depending
on whether spin is imposed. When the system rotates with inclined spin with/without
precession, these three mechanisms change direction synchronously with the motion
of spin. Therefore the instability modes travelling in different directions can ‘sense’
these three mechanisms periodically, and the stability symmetry in the (x, y)-plane
and the folding structure for the mixed modes are accordingly retained. On the other
hand, when the system rotates with precession only, these three mechanisms act with
stationary orientations and destroy both the stability symmetry in the (x, y)-plane and
the folding structure of the mixed modes.

When the system remains vertical, with or without rotation, the morphological
and convective modes are stationary and the mixed modes are oscillatory. When only
inclined-precession is imposed, all instability modes become oscillatory. When inclined-
spin-with/without-precession is applied, all instability modes are also oscillatory,
the morphological and convective modes move synchronously with spin while the
mixed modes moves non-synchronously with spin. Regarding the stability criterion,
the morphological instability is slightly stabilized by inclined rotation while the
mixed mode and convective mode are significantly stabilized. Because inclined
precession may destroy the symmetry in the (x, y)-plane and become destabilizing
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when interacting with the basic shear flow, we suggest that, in the industrial application
of preventing the final castings from compositional non-uniformities, inclined spin is
more effective than inclined precession.

Finally, a further remark regarding the comparison between our earlier work
(Chung & Chen 2000) and the present work is in order. As stated in the introductory
section, both these works consider the effects of inclined spin and precession, while
in the earlier work the discussion was focused on the buoyancy-driven instability in
the mush and in the present study the investigation is devoted to the morphological
and convective instability in the melt. In the earlier work, although the five stability
mechanisms also exist, the most significant instability mechanisms in the mush are the
reduction of buoyancy along the height and the induced basic flow, both resulting in
a more stable state of the mush. The other mechanisms are weak because of the large
resistance to the flow in the dendrite mush, so that the effects of the Coriolis force
are negligible and the flow in the mush becomes monotonically more stable with
increasing inclination angle. In addition, the breakdown of the stability symmetry
in the (x, y)-plane for the mush is primarily caused by the basic flow, which moves
in the direction parallel to the gravity component in the (x, y)-plane. As a result, the
most-unstable mode propagates in the direction perpendicular to the basic flow. In the
present system, however, the Coriolis force is much stronger in the melt, which then
interacts with the basic blow and causes more complex stability results, as presented
in the previous section.

We would like to thank the National Science Council of Taiwan for financial
support through Grant No. NSC 90-2212-E-002-202.

Appendix. The coefficients of the perturbation equations (4.12) and (4.13)

f11(z) = Ac

[
e−z/dE cos(bz − φc) − e−z cos(φc)

]
+ At

[
e−z/dE cos(bz − φt ) − e−z/Le cos(φt )

]
,

f12(z) = Ac

[
e−z/dE sin(bz − φc) + e−z sin(φc)

]
+ At

[
e−z/dE sin(bz − φt ) + e−z/Le sin(φt )

]
,

f21(z) = Ac

[
−

(
1

d2
E

− b2

)
e−z/dE cos(bz − φc) + e−z cos(φc) − 2b

dE

e−z/dE sin(bz − φc)

]

+ At

[
−

(
1

d2
E

− b2

)
e−z/dE cos(bz − φt ) +

e−z/Le

L2
e

cos(φt ) − 2b

dE

e−z/dE sin(bz − φt )

]
,

f22(z) = Ac

[
−

(
1

d2
E

− b2

)
e−z/dE sin(bz − φc) − e−z sin(φc) +

2b

dE

e−z/dE cos(bz − φc)

]

+ At

[
−

(
1

d2
E

− b2

)
e−z/dE sin(bz − φt ) − e−z/Le

L2
e

sin(φt ) − 2b

dE

e−z/dE cos(bz − φt )

]
,

f31(z) = Ac

[
e−z/dE

dE

sin(bz − φc) + e−z sin(φc) − be−z/dE cos(bz − φc)

]

+ At

[
e−z/dE

dE

sin(bz − φt ) +
e−z/Le

Le

sin(φt ) − be−z/dE cos(bz − φt )

]
,

f32(z) = Ac

[
−e−z/dE

dE

cos(bz − φc) + e−z cos(φc) − be−z/dE sin(bz − φc)

]

+ At

[
−e−z/dE

dE

cos(bz − φt ) +
e−z/Le

Le

cos(φt ) − be−z/dE sin(bz − φt )

]
,
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f41(z) = Ac

[
e−z/dE

dE

cos(bz − φc) − e−z cos(φc) + be−z/dE sin(bz − φc)

]

+ At

[
e−z/dE

dE

cos(bz − φt ) − e−z/Le

Le

cos(φt ) + be−z/dE sin(bz − φt )

]
,

f42(z) = Ac

[
e−z/dE

dE

sin(bz − φc) + e−z sin(φc) − be−z/dE cos(bz − φc)

]
,

+ At

[
e−z/dE

dE

sin(bz − φt ) +
e−z/Le

Le

sin(φt ) − be−z/dE cos(bz − φt )

]
.

In the above equations, the coefficients Ac and At are

Ac = αSnRcGc/ (2
c), At = αSnRtGlLe/(2
t ).

REFERENCES

Brattkus, K. & Davis, S. H. 1988 Flow induced morphological instabilities: Stagnation-point flows,
J. Cryst. Growth 89, 423–427.

Busse, F. H. & Kropp, M. 1992 Buoyancy driven instabilities in rotating layers with parallel axis
of rotation. Z. Angew. Math. Phys. 43, 28–35.

Chen, Y. J. & Davis, S. H. 1999 Directional solidification of a binary alloy into a cellular convective
flow: localized morphologies. J. Fluid Mech. 395, 253–270.

Chung, C. A. & Chen, F. 2000 Convection in directionally solidifying alloys under inclined rotation.
J. Fluid Mech. 412, 93–123.

Chung, C. A. & Chen, F. 2001 Morphological instability in a directionally solidifying solution with
an imposed shear flow. J. Fluid Mech. 436, 85–106.

Coriell, S. R., Cordes, M. R., Boettinger, W. J. & Sekerka, R. F. 1980 Convective and interfacial
instabilities during unidirectional solidification of a binary alloy. J. Cryst. Growth 49, 13–28.

Coriell, S. R., McFadden G. B., Boisvert, R. F. & Sekerka, R. F. 1984 Effect of a forced Couette
flow on coupled convective and morphological instabilities during unidirectional solidification.
J. Cryst. Growth 69, 15–22.

Davalos-Orozco, L. A. & Busse, F. H. 2002 Instability of a thin film flowing on a rotating
horizontal or inclined plane. Phys. Rev. E 65, 026312, 1–10.

Davis, S. H. 1990 Hydrodynamic interaction in directional solidification. J. Fluid Mech. 212, 242–262.

Davis, S. H. & Schulze, T. P. 1996 Effects of flow on morphological stability during directional
solidification. Metall. Mater. Trans. A 27, 583–594.

Delves, R. T. 1968 Theory of stability of a solid-liquid interface during growth from stirred melts.
J. Cryst. Growth 3, 562–568.

Delves, R. T. 1971 Theory of the stability of a solid-liquid interface during growth from stirred
melts – II. J. Cryst. Growth 8, 13–25.

Forth, S. A. & Wheeler, A. A. 1989 Hydrodynamic and morphological stability of the
unidirectional solidification of a freezing binary alloy: a simple model. J. Fluid Mech. 202,
339–366.

Forth, S. A. & Wheeler, A. A. 1992 Coupled convective and morphological instability in a simple
model of the solidification of a binary alloy, including a shear flow. J. Fluid Mech. 236, 61–94.

Glicksman, M. E., Coriell, S. R. & McFadden, G. B. 1986 Interaction of flows with the crystal-melt
interface. Annu. Rev. Fluid Mech. 18, 307–335.

Hoffmann, N. P. & Busse, F. H. 2001 Linear instability of Poiseuille–Couette–Ekman flows:
Local results for flows between differentially rotating disks with throughflow. Phys. Fluids 13,
2735–2738.

Jenkins, D. R. 1985 Nonlinear analysis of convective and morphological instability during
solidification of a dilute binary alloy. IMA J. Appl. Maths 35, 145–157.

Kropp, M. & Busse, F. H. 1991 Thermal convection in differentially rotating system. Geophys.
Astrophys. Fluid Dyn. 61, 127–148.



408 C. A. Chung and F. Chen

Langer, J. S. 1980 Instabilities and pattern formation in crystal growth. Rev. Mod. Phys. 52, 1–28.

Lu, J. W. & Chen, F. 1997 Rotation effects on the convection of binary alloys unidirectionally
solidified from below, Intl J. Heat Mass Transfer 40, 237–246.

McFadden, G. B., Coriell, S. R. & Alexander, J. I. D. 1988 Hydrodynamic and free boundary
instabilities during crystal growth: the effect of a plane stagnation flow. Commun. Pure Appl.
Maths 41, 683–706.

Matthews, P. & Cox, S. 1997 Linear stability of rotating convection in an imposed shear flow.
J. Fluid Mech. 350, 271–293.

Mullins, W. W. & Sekerka, R. F. 1964 Stability of a planar interface during solidification of a
binary alloy. J. Appl. Phys. 35, 444–451.

Oztekin, A. & Pearlstein, A. J. 1992 Coriolis effects on the stability of plane-front solidification
of dilute Pb–Sn binary alloys Metall Trans. 23b, 73–80.

Powell, M. J. 1970 Numerical Methods for Nonlinear Algebraic Equations. Gordon & Breach.

Riley, D. S. & Davis S. H. 1990a Long-wave interactions in morphological and convective
instabilities. IMA J. Appl. Maths 45, 267–285.

Riley, D. S. & Davis S. H. 1990b Long-wave morphological instabilities in the directional
solidification of a dilute binary mixture. SIAM J. Appl. Maths 50, 420–436.

Rutter, J. W. & Chalmers, B. A. 1953 A prismatic substructure formed during solidification of
metals. Can. J. Phys. 31, 15–39.

Sample, A. K. & Hellawell, A. 1984 The mechanism of formation and prevention of channel
segregation during alloy solidification. Metall. Trans. A 15, 2163–2173.

Schulze, T. P. & Davis, S. H. 1995 Shear stabilization of morphological instability during directional
solidification. J. Cryst. Growth 149, 253–265.

Ungar, L. H & Brown R. A. 1984 Cellular interface morphologies in directional solidification. The
one-sided model. Phys. Rev. B 29, 1367–1380.

Volfson, D. & Vinals, J. 2001 Morphological stability analysis of directional solidification into an
oscillatory fluid layer. Phys. Fluids 13, 3599–3609.

Wheeler, A. A. 1991 A strongly nonlinear analysis of the morphological instability of a freezing
binary alloy: solutal convection, density change, and nonequilibrium effects. IMA J. Appl.
Maths 47, 173–192.

Wollkind, D. J. & Segel, L. A. 1970 A nonlinear stability analysis of the freezing of a dilute
binary alloy. Phil. Trans. R. Soc. Lond. A 268, 351–380.


